
Softly broken A4 symmetry for nearly degenerate
neutrino masses

Huchan Lee

Yonsei University
Department of Physics

May 16, 2017

1 / 43



Table of Contents

1 Introduction

2 Discrete symmetry A4

3 Model of nearly degenerate neutrino masses

4 Phenomenological consequences

5 Concluding remarks

2 / 43



Table of Contents

1 Introduction

2 Discrete symmetry A4

3 Model of nearly degenerate neutrino masses

4 Phenomenological consequences

5 Concluding remarks

3 / 43



1. Introduction

Figure: The Standard Model

Some deficiencies of the SM

The origin of mass

The strong CP problem

Neutrino oscillations

Matter-antimatter
asymmetry

The natrue of DM and DE
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1. Introduction

Figure: The Standard Model Figure: Neutrino oscillations

Neutrinos should be massive!

We need an appropriate theory to fill the gap.
We need BSM!
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1. Introduction

Quantity Three-neutrino mixing parameters from pdg

∆m2
sun = ∆m2

21(10−5 eV2) 7.53± 0.18

|∆m2
atm| = |∆m2

32(10−3 eV2)| 2.42± 0.06

sin2 θ12 0.304± 0.014

sin2 2θ12 0.846± 0.021

sin2 θ23 0.514+0.055
−0.056

sin2 2θ23 0.999+0.001
−0.018

sin2 θ13 0.0219± 0.0012

sin2 2θ13 0.085± 0.005

δCP ±π/2

Table: Neutrino oscillation data

Oscillation experiments do NOT provide information about

absolute neutrino mass scale

Dirac/Majorana nature of neutrinos
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1. Introduction

We don’t know absolute ν mass scale. So we have two possible scenarios based on the
experimental results.

Figure: Normal and Inverted hierarchy

|∆m2
32| ' 2.5× 10−3 eV2

∆m2
21 ' 7.5× 10−5 eV2

From this graph, we can naturally come up with neutrino mixing.
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1. Introduction

Neutrino mixing is important because it could provide new clues for the understanding
of the flavor problem.

Neutrino mixing pattern is completely different that of quark mixing.

Neutrino Mixing Quark Mixing

From neutrino mixing, we could expect a specific symmetry!
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1. Introduction

Then you can ask me why you take a specific symmetry as for neutrino research.

Energy

A4 symmetry
is breaking

At low energy scale,
three flavour neutrinos

At high energy scale,
indistinguishible neutrinos
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1. Introduction

In order to read a specific symmetry from neutrino mixing, lots of special groups have been
studied by neutrino theorists.

Group d Irr. Repr.’s Presentation

D3 ∼ S3 6 1, 1′, 2 A3 = B2 = (AB)2 = 1

D4 8 11, ·, 14, 2 A4 = B2 = (AB)2 = 1

D7 14 1, 1′, 2, 2′, 2′′ A7 = B2 = (AB)3 = 1

A4 12 1, 1′, 1′′, 3 A3 = B2 = (AB)3 = 1

A5 ∼ PSL2(5) 60 1, 3, 3′, 4, 5 A3 = B2 = (BA)5 = 1

T ′ 24 1, 1′, 1′′, 2, 2′, 2′′, 3 A3 = (AB)3 = R2 = 1, B2 = R

S4 24 1, 1′, 2, 3, 3′ BM : A4 = B2 = (AB)3 = 1

TB : A3 = B4 = (BA2)2 = 1

∆(27) ∼ Z3 o Z3 27 11, ·, 19, 3, 3̄
PSL2(7) 168 1, 3, 3̄, 6, 7, 8 A3 = B2 = (BA)7 = (B−1A−1BA)4 = 1

T7 ∼ Z7 o Z3 21 1, 1′, 1̄′, 3, 3̄ A7 = B3 = 1, AB = BA4

Table: Some small discrete groups used for model building.

Tri-Bimaximal mixing : mixing equally νe with νµ, and ντ
Bimaximal mixing : mixing equally νµ with ντ
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1. Introduction

The charged lepton masses are certainly not degenerate, so whatever symmetry we use
to maintain the neutrino mass degeneracy must be broken.

Figure: Each lepton mass

To implement this idea in a renormalizable field theory, the symmetry in question should
be broken only spontaneously and by explicit soft terms(if it is not a gauge symmetry).
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2. Discrete symmetry A4

The A4 symmetry is group of the even permutations of S4.

Figure: The A4 symmetry

The A4 symmetry

has 12 elements

are divided into 4 classes, with the number of elements 1, 4, 4, 3, respectively

has 4 irreducible representations, with dimensions ni, such that
∑
i

n2
i = 12
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2. Discrete symmetry A4

There is only one solution corresponding to
∑
i

n2
i = 12.

n1 = n2 = n3 = 1, and n4 = 3,

From now on, I call the irreducible representations as below

1 : having dimension n1 = 1

1′ : having dimension n2 = 1

1′′ : having dimension n3 = 1

3 : having dimension n4 = 3
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2. Discrete symmetry A4

Let me go over classes of A4 symmetry. First of all, all of the A4 elements are written
by products of the generator, s and t, which satisfy

s2 = t3 = (st)3 = e

C1 :

1 0 0
0 1 0
0 0 1

,

C2 :

0 0 1
1 0 0
0 1 0

,

 0 0 1
−1 0 0
0 −1 0

,

0 0 −1
1 0 0
0 −1 0

,

 0 0 −1
−1 0 0
0 1 0

,

C3 :

0 1 0
0 0 1
1 0 0

,

 0 1 0
0 0 −1
−1 0 0

,

 0 −1 0
0 0 1
−1 0 0

,

0 −1 0
0 0 −1
1 0 0

,

C4 :

1 0 0
0 −1 0
0 0 −1

,

−1 0 0
0 1 0
0 0 −1

,

−1 0 0
0 −1 0
0 0 1

.
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2. Discrete symmetry A4

Now, I know both irreducible representations for A4 symmetry and the classes of the
symmetry A4.

Then I can write down the character table for the A4 symmetry.

A4 1C1(1) 3C2(s) 4C3(t) 4C3(t2)

χ
[1]
i 1 1 1 1

χ
[1′]
i 1 1 ω ω2

χ
[1′′]
i 1 1 ω2 ω

χ
[3]
i 3 −1 0 0

Table: The character table for the A4 symmetry

It is possible to decompose the Kronecker products of two multiplets now.

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3

Please keep in mind that this decomposition of the Kronecker products does not depend
on the choice of basis.
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2. Discrete symmetry A4

Until now, I have used the bases for the
generators s and t on the representation 3.

s =

1 0 0
0 −1 0
0 0 −1



t =

0 0 1
1 0 0
0 1 0



And then, I will consider another basis for
the A4 symmetry.

a =
1

3

−1 2 2
2 −1 2
2 2 −1



b =

1 0 0
0 ω 0
0 0 ω2


These bases are transformed by the following unitary transformation Uω as

Uω =
1√
3

1 1 1
1 ω ω2

1 ω2 ω,


and the elements a and b are written as

a = U†ωsUω, b = U†ωtUω

17 / 43



2. Discrete symmetry A4

Then, let me compare decomposition of the Kronecker products of two triplets by one
basis with it by another basis.

The Kronecker products of two triplets by one basisa1a2
a3


3

⊗

b1b2
b3


3

= (a1b1 + a2b2 + a3b3)1 ⊕
(
a1b1 + ω2a2b2 + ωa3b3

)
1′ ⊕

(
a1b1 + ωa2b2 + ω2a3b3

)
1′′ ⊕

a2b3 + b3a2
a3b1 + b1a3
a1b2 + b2a1


3

⊕

a2b3 − b3a2a3b1 − b1a3
a1b2 − b2a1


3

The Kronecker products of two triplets by another basisa1a2
a3


3

⊗

b1b2
b3


3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′ ⊕

(a2b2 + a1b3 + a3b1)1′′ ⊕
1

3

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1


3

⊕ 1

2

a2b3 − a3b2a1b2 − a2b1
a1b3 − a3b1


3

18 / 43



2. Discrete symmetry A4

Before to go on

One assigns leptons to the four inequivalent representations of A4:(
e
νe

)
L

(
µ
νµ

)
L

(
τ
ντ

)
L

3

eR µR τR

1 1′′ 1′

Here we consider a see-saw realization, so we also introduce right-handed neutrino
fields νR transforming as a triplet of A4(

e
νe

)
L

(
µ
νµ

)
L

(
τ
ντ

)
L

νeR νµR ντR
3

eR µR τR

1 1′′ 1′

We adopt a supersymmetric (SUSY) also to make contact with Grand Unification.

→ Flavor symmetries are supposed to act near the GUT scale.
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2. Discrete symmetry A4

The reason that we choose A4 for discussing degenerate neutrino masses is that

1 it is simplest.

2 it is ideal for having degenerate Dirac neutrino masses while allowing arbitrary
charged-lepton masses.

In contrast,

The S3 discrete symmetry has one 2 and two 1.

The S4 discrete symmetry has two 3 and one 2 and two 1.

If continuous groups are considered, then SO(3) has a three dimensional
representation and may be used as well.
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3. Model of nearly degenerate neutrino masses

Under A4 and L, the color-singlet
fermions and scalars of this model
transform as follows.

(νi, li)L ∼ (3, 1) ,

l1R ∼ (1, 1),

l2R ∼ (1′, 1),

l3R ∼ (1′′, 1),

NiR ∼ (3, 0),

Φi =
(
φ+
i , φ

0
i

)
∼ (3, 0) ,

η =
(
η+, η0

)
∼ (1,−1) .

Hence its Lagrangian has the invariant
terms

L =
1

2
MN2

iR + fN iR

(
νiLη

0 − liLη+
)

+ hijk(νi, li)LljRΦk + H. c.,

where

hi1k = h1

1 0 0
0 1 0
0 0 1

 ,

hi2k = h2

1 0 0
0 ω 0
0 0 ω2

 ,

hi3k = h3

1 0 0
0 ω2 0
0 0 ω

 .
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3. Model of nearly degenerate neutrino masses

The important assumptions to let you help understand the Lagrangian.

1 I limited the energy scale for NiR to
be about TeV.

2 I have four Higgs
doublets(Φ1,Φ2,Φ3, η).

3 I assigned the lepton number for
NiR to be 0 instead of 1.

4 I assigned the lepton number for η
to be −1 instead of 0.

(νi, li)L ∼ (3, 1) ,

l1R ∼ (1, 1),

l2R ∼ (1′, 1),

l3R ∼ (1′′, 1),

NiR ∼ (3, 0),

Φi =
(
φ+
i , φ

0
i

)
∼ (3, 0) ,

η =
(
η+, η0

)
∼ (1,−1) .

3, 4 are related to a way writing down a new type of each Yukawa term.
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3. Model of nearly degenerate neutrino masses

In order to know what this Lagrangian tells us, let’s look into the Lagrangian in detail.

Majorana masses for heavy r-h neutrinos

L =
1

2
MN2

iR + fN iR

(
νiLη

0 − liLη+
)

+ hijk(νi, li)LljRΦk + H. c.,

Dirac masses for l-h neutrinos

Dirac masses for l-h charged leptons

First of all, let me contemplate for the third term in the above Lagrangian.

L = · · ·+ · · ·+ hijk(νi, li)LljRΦk + H. c.,
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3. Model of nearly degenerate neutrino masses

Let me contemplate for the charged-lepton terms in the Lagrangian.

L = · · ·+ · · ·+ hijk(νi, li)LljRΦk + H. c.,

Expanding the third term, it becomes as below(〈φ0
i 〉 = vi).

Lthird =hijk(νi, li)LljRΦk

=h1v1l1Ll1R + h2v1l1Ll2R + h3v1l1Ll3R

+ h1v2l2Ll1R + h2v2ωl2Ll2R + h3v2ω
2l2Ll3R

+ h1v3l3Ll1R + h2v3ω
2l3Ll2R + h3v3ωl3Ll3R

+ H. c.,

Let me see the above expanded form linking liL to ljR (i, j = 1, 2, 3) to the matrix form.

Ml =

h1v1 h2v1 h3v1
h1v2 h2v2ω h3v2ω

2

h1v3 h2v3ω
2 h3v3ω


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3. Model of nearly degenerate neutrino masses

Let me see the above expanded form linking liL to ljR (i, j = 1, 2, 3) to the matrix form.

Ml =

h1v1 h2v1 h3v1
h1v2 h2v2ω h3v2ω

2

h1v3 h2v3ω
2 h3v3ω


If v1 = v2 = v3 = v, then Ml is easily diagonalized:

U†LMlUR =


√

3h1v 0 0

0
√

3h2v 0

0 0
√

3h3v

 =

me 0 0
0 mµ 0
0 0 mτ


where

UL =
1√
3

1 1 1
1 ω ω2

1 ω2 ω

 , UR =

1 0 0
0 1 0
0 0 1


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3. Model of nearly degenerate neutrino masses

The 6× 6 Majorana mass matrix spanning (νe, νµ, ντ , N1, N2, N3) is then given by

M(ν,N) =

(
0 U†Lfu

U∗Lfu M

)
Hence the 3× 3 see-saw mass matrix for (νe, νµ, ντ ) becomes

Mν =
f2u2

M
UTLUL =

f2u2

M

1 0 0
0 0 1
0 1 0

  νµ mixes maxi-
mally with ντ

This matrix shows that νµ mixes maximally with ντ , but since all physical neutrino

masses are degenerate, there are no neutrino oscillations.
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3. Model of nearly degenerate neutrino masses

This below matrix shows that νµ mixes maximally with ντ , but since all physical
neutrino masses are degenerate, there are no neutrino oscillations.

Mν =
f2u2

M
UTLUL =

f2u2

M

1 0 0
0 0 1
0 1 0

  νµ mixes maxi-
mally with ντ

To break the degeneracy, the term MN2
iR may be substituted for arbitrary soft terms of

the form MijNiRNjR in the Lagrangian.

L =
1

2
MN2

iR + fN iR

(
νiLη

0 − liLη+
)

+ hijk(νi, li)LljRΦk + H. c.,

↓

L =
1

2
MijNiRNjR + fN iR

(
νiLη

0 − liLη+
)

+ hijk(νi, li)LljRΦk + H. c.,
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4. Phenomenological consequences

The minimal standard model → one Higgs scalar doublet

This suggested A4 model → Φ1,2,3, and η

The interplay between Φi and η is the same as in Ref1, which allows u = 〈η0〉 to be
small.

The corresponding A4-invariant Higgs potential containing Φ is given by

V =m2
∑
i

Φ†iΦi +
1

2
λ1

(∑
i

Φ†iΦi

)2

+ λ2

(
Φ†1Φ1 + ω2Φ†2Φ2 + ωΦ†3Φ3

)(
Φ†1Φ1 + ωΦ†2Φ2 + ω2Φ†3Φ3

)
+ λ3

[(
Φ†2Φ3

)(
Φ†3Φ2

)
+
(

Φ†3Φ1

)(
Φ†1Φ3

)
+
(

Φ†1Φ2

)(
Φ†2Φ1

)]
+

{
1

2
λ4

[(
Φ†2Φ3

)2
+
(

Φ†3Φ1

)2
+
(

Φ†1Φ2

)2]
+ H. c.

}

1
E. Ma, Phys. Rev. Lett 86, 2502 (2001)
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4. Phenomenological consequences

Before to go on, let me compare the A4-invariant Higgs potential to the suggested
Higgs potential by reference 1.

The corresponding Higgs potential by reference 1 is given by(one Φ, one η)

V (Φ, η) =m2
1Φ†Φ +m2

2η
†η +

1

2
λ1

(
Φ†Φ

)2
+

1

2
λ2

(
η†η
)2

+ λ3

(
Φ†Φ

)(
η†η
)

+ λ4

(
Φ†η

)(
η†Φ

)
+ µ2

12

(
Φ†η + η†Φ

)
The corresponding A4-invariant Higgs potential is given by(three Φ, one η)

V (Φi, η) =m2
iΦ
†
iΦi +m2

4η
†η +

1

2
λi
(

Φ†iΦi
)2

+
1

2
λ4

(
η†η
)2

+ λ5

(
Φ†iΦi

)(
η†η
)

+ λ6

(
Φ†iη

)(
η†Φi

)
+ µ2

i4

(
Φ†iη + η†Φi

)
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4. Phenomenological consequences

Before to go on, let me compare the A4-invariant Higgs potential to the suggested
Higgs potential by reference 1.

The corresponding A4-invariant Higgs potential is given by(three Φ, one η)

V (Φi, η) =m2
iΦ
†
iΦi +m2

4η
†η +

1

2
λi
(

Φ†iΦi
)2

+
1

2
λ4

(
η†η
)2

+ λ5

(
Φ†iΦi

)(
η†η
)

+ λ6

(
Φ†iη

)(
η†Φi

)
+ µ2

i4

(
Φ†iη + η†Φi

)
The corresponding A4-invariant Higgs potential containing Φ is given by(three Φ)

V (Φi) =m2
∑
i

Φ†iΦi +
1

2
λ1

(∑
i

Φ†iΦi

)2

+ λ2

(
Φ†1Φ1 + ω2Φ†2Φ2 + ωΦ†3Φ3

)(
Φ†1Φ1 + ωΦ†2Φ2 + ω2Φ†3Φ3

)
+ λ3

[(
Φ†2Φ3

)(
Φ†3Φ2

)
+
(

Φ†3Φ1

)(
Φ†1Φ3

)
+
(

Φ†1Φ2

)(
Φ†2Φ1

)]
+

{
1

2
λ4

[(
Φ†2Φ3

)2
+
(

Φ†3Φ1

)2
+
(

Φ†1Φ2

)2]
+ H. c.

}
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4. Phenomenological consequences

Let 〈φ0
i 〉 = vi, then the minimum of V (Φi) is

Vmin (Φi) = m2 (|v1|2 + |v2|2 + |v3|2
)

+
1

2
λ1

(
|v1|2 + |v2|2 + |v3|2

)2
+ λ2

(
|v1|2 + ω2|v2|2 + ω|v3|2

) (
|v1|2 + ω|v2|2 + ω2|v3|2

)
+ λ3

(
|v2|2|v3|2 + |v3|2|v1|2 + |v1|2|v2|2

)
+

{
1

2
λ4

[
(v∗2)

2
v23 + (v∗3)

2
v21 + (v∗1)

2
v22

]
+ c. c.

}
The minimization conditions on vi are given by

0 =
∂Vmin
∂v∗1

=m2v1 + λ1v1
(
|v1|2 + |v2|2 + |v3|2

)
+ λ2v1

(
2|v1|2 − |v2|2 − |v3|2

)
+ λ3v1

(
|v2|2 + |v3|2

)
+ λ4v

∗
1

(
v22 + v23

)
,

and other similar equations. Hence the solution

v1 = v2 = v3 = v =

√
−m2

3λ1 + 2λ3 + 2λ4

is allowed if λ4 is real.
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4. Phenomenological consequences

The mass-squared matrices in the Reφ0
i , Imφ0

i , and φ±i bases are all of the form

M2 =

a b b
b a b
b b a


=

a+ 2b 0 0
0 a− b 0
0 0 a− b


where

Reφ0
i : a = 2 (λ1 + 2λ2) v2, b = 2 (λ1 − λ2 + λ3 + λ4) v2,

Imφ0
i : a = −4λ4v

2, b = 2λ4v
2,

φ±i : a = −2 (λ3 + λ4) v2, b = (λ3 + λ4) v2.

The eigenvalues of M2 are a+ 2b, a− b, and a− b.
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4. Phenomenological consequences

Hence (Φ1 + Φ2 + Φ3) /
√

3 has the properties of the standard-model Higgs doublet with
mass-squared eigenvalues

2 (3λ1 + 2λ3 + 2λ4) v2 for Re
(
φ0
1 + φ0

2 + φ0
3

)
/
√

3,

0 for Im
(
φ0
1 + φ0

2 + φ0
3

)
/
√

3,

0 for
(
φ±1 + φ±2 + φ±3

)
/
√

3.

The two other linear combinations are mass degenerate in each sector with mass-squared
eigenvalues given by

M2
R = 2 (3λ2 − λ3 − λ4) v2,

M2
I = −6λ4v

2,

M2
± = −3 (λ3 + λ4) v2.

a+ 2b a− b a− b
Reφ0

i 2 (3λ1 + 2λ3 + 2λ4) v2 2 (3λ2 − λ3 − λ4) v2 2 (λ2 − λ3 − λ4) v2

Imφ0
i 0 −6λ4v

2 −6λ4v
2

φ±i 0 −3 (λ3 + λ4) v2 −3 (λ3 + λ4) v2
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4. Phenomenological consequences

The distinct phenomenological signatures of our A4 model are thus given by the two
new Higgs doublets. They are predicted to be pairwise degenerate in mass and their
Yukawa interactions are given by

Lint =
(mτ

v
(νe, e)LτR +

mµ

v
(ντ , τ)LµR +

me

v
(νµ, µ)LeR

)
Φ′

+
(mτ

v
(νµ, µ)LτR +

mµ

v
(νe, e)LµR +

me

v
(ντ , τ)LeR

)
Φ′′ + H. c.,

where

Φ′ =
1√
3

(
Φ1 + ωΦ2 + ω2Φ3

)
,

Φ′′ =
1√
3

(
Φ1 + ω2Φ2 + ωΦ3

)
,
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4. Phenomenological consequences

This means that the lepton flavor is necessarily violated and serves as an unmistakable
prediction of this model.

Using the below Lagrangian,

Lint =
(mτ

v
(νe, e)LτR +

mµ

v
(ντ , τ)LµR +

me

v
(νµ, µ)LeR

)
Φ′

+
(mτ

v
(νµ, µ)LτR +

mµ

v
(νe, e)LµR +

me

v
(ντ , τ)LeR

)
Φ′′ + H. c.,

we find that the most prominent (with strength mτmµ/v
2) exotic decays of this model

are
τ−R → µ−Lµ

−
Re

+
R, τ−R → µ−Lµ

+
Le
−
L ,

through
(
φ′′
)0

exchange.

|τ−R → µ−Lµ
−
Re

+
R| ∝M

−2
0 = M−2

R +M−2
I

|τ−R → µ−Lµ
+
Le
−
L | ∝M

−2
1 = |M−2

R −M−2
I |
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4. Phenomenological consequences

Hence,

B
(
τ− → µ−µ−e+

)
=

(
9m2

τm
2
µ

M4
0

)(
v20
3v2

)2

B (τ → µνν),

where v0 =
(

2
√

2GF
)−1/2

and 3v2 < v20 . Using B (τ → µνν) = 0.174, we find

B
(
τ− → µ−µ−e+

)
= 5.5× 10−10

(
v20
3v2

)2(
100 GeV

M0

)4

as compared to the experimental upper bound of 1.5× 10−6.

Similarly, B
(
τ−R → µ−Lµ

+
Le
−
L

)
is also given as below

B
(
τ− → µ−µ+e−

)
=

(
9m2

τm
2
µ

M4
1

)(
v20
3v2

)2

B (τ → µνν),

as compared to the experimental upper bound of 1.8× 10−6.
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4. Phenomenological consequences

From the Lagrangian, there are also tree-level contributions to τ and µ decays through
charged-scalar exchange.

Lint =
(mτ

v
(νe, e)LτR +

mµ

v
(ντ , τ)LµR +

me

v
(νµ, µ)LeR

)
Φ′

+
(mτ

v
(νµ, µ)LτR +

mµ

v
(νe, e)LµR +

me

v
(ντ , τ)LeR

)
Φ′′ + H. c.,

For example,
µ−R → e−Rντνµ, µ−R → e−Rνeντ ,

through
(
φ′
)±

and
(
φ′′
)±

exchange, respectively.

However, these amplitudes are completely negligible since

they are proportional to mµme and

add incoherently to the dominant µ−L → e−Lνµνe

The same holds true for τ decays, but to a lesser extent.
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4. Phenomenological consequences

Consider next the muon anomalous magnetic moment, which receives a contribution

proportional to m2
τ from

(
φ′′
)0

.

A straightforward calculation yields

∆aµ =
GFm

2
τ

4
√

2π2

(
m2
µ

M2
0

)(
v20
3v2

)
= 7.4× 10−13

(
v20
3v2

)(
100 GeV

M0

)2

,

as compared to the possible discrepancy2 of (426± 165)× 10−11, based on the recent

experimental measurement3.

Hence, the contribution to ∆aµ from the Lint is negligible, and the latter’s theoretical

explanation remains that of η and N exchange as proposed in Ref.4

2
A. Czarnecki and W.J. Marciano, Phys. Rev. D 64, 013014 (2001)

3
H.N. Brown et al., Phys. Rev. Lett. 86, 2227 (2001)

4
E. Ma and M. Raidal, Phys. Rev. Lett. 87, 011802 (2001)
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4. Phenomenological consequences

Radiative lepton-flavor-changing decays (i.e., τ → µγ, τ → eγ, µ→ eγ) through η and

N exchange are suppressed by the near degeneracy of the neutrino mass matrix5.

However, they also receive contributions from Lint. The most prominent process is

actually µ→ eγ from
(
φ′
)0

exchange, with an amplitude given by

A =
e

32π2

m2
τ

M2
eff

mµ

v2
εαqβeσαβ

(
1 + γ5

2

)
µ,

where
1

M2
eff

=
1

M2
R

(
ln
M2
R

m2
τ

− 3

2

)
− 1

M2
I

(
ln
M2
I

m2
τ

− 3

2

)
.

Hence

B (µ→ eγ) =
27α

8π

m4
τ

M4
eff

(
v20
3v2

)2

.

Using the experimental upper bound6 of 1.2× 10−11, we find

Meff > 284 GeV(v0/
√

3v).
5
E. Ma and M. Raidal, Phys. Rev. Lett. 87, 011802 (2001)

6
M.L. Brooks et al., Phys. Rev. Lett. 83, 1521 (1999).
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5. Concluding remarks

1 I have shown how nearly degenerate neutrino masses can be obtained in the
context of a softly and spontaneously broken discrete A4 (tetrahedral) symmetry
while allowing realistic charged-lepton masses.

2 In addition to the standard model particles, we have three heavy neutral
right-handed singlet fermions Ni at the TeV scale or below, whose decay into
charged leptons would map out the neutrino mass matrix.

3 The nearly mass-degenerate Ni can explain the possible discrepancy of the muon
anomalous magnetic moment.

4 The three new Higgs scalar doublets Φi of this model have distinct experimental

signatures. One combination, i.e., (Φ1 + Φ2 + Φ3) /
√

3 behaves like the standard
model Higgs doublet, except that it couples only to leptons.

5 The other two, i.e., Φ′ and Φ′′, are predicted to be pairwise mass degenerate and
have precisely determined flavor-changing couplings. They are consistent with all
present experimental bounds and amenable to experimental discovery below a TeV.
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