Minimal extension of tribimaximal mixing and generalized $Z_2 \times Z_2$ symmetries

S. Gupta

A. S. Joshipura and K. M. Patel
The measurement of neutrino masses and mixings during the past decade has provided the first evidence for physics beyond the standard model (SM).

The neutrino mass matrix has nine parameters,

- three masses, three mixing angles and three CP violating phases if the neutrinos are Majorana particles

- The neutrino mass matrix is diagonalized by

\[
m_\nu = U \cdot \text{Diag}(m_1, m_2 e^{i\alpha}, m_3 e^{i\beta}) \cdot U^T
\]

\[
U = \begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
 -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\
 s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}
\end{pmatrix}
\]
Introduction

- Experimental finding in this area has been the announcements by the T2K, and Double CHOOZ \(^1\), and recently by the Daya Bay and RENO \(^2\) experiments that one of the hitherto unknown neutrino mixing angles, namely \(\theta_{13}\), is not only non-zero but “large”.

- Large \(\theta_{13}\) have also been suggested by a global analysis of the existing oscillation data. \(^3\)

- The Tri-bimaximal mixing leads to the predictions on the three mixing angles.

\(^1\) H. De. Kerrect [Double CHOOZ Collaboration], talk at LowNu conference in Korea (2011)

Tribimaximal Mixing

- \(\sin^2 \theta_{13} = 0 \),
- \(\sin^2 \theta_{23} = \pi/4 \) and
- \(\sin^2 \theta_{12} = 1/3 \)

For non zero \(\theta_{13} \)

- Perturbations to TBM pattern affecting mainly \(\theta_{13} \)
- Alternative flavour symmetries which imply non-zero \(\theta_{13} \)

The minimal scheme would be the one in which \(\theta_{13} \) is non zero but \(\theta_{23} \) and \(\theta_{12} \) remain close to their predictions in the TBM scheme.

The TBM pattern has the presence of specific \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) symmetry in the neutrino mass matrix \(M_{\nu_f} \) in the flavor basis. This symmetry is defined in general by the operators \(S_i \), \(i = 1, 2, 3 \):

\[
(S_i)_{jk} = \delta_{jk} - 2U_{ji}U^*_{ki} \tag{1}
\]

where \(U \) is the matrix diagonalizing \(M_{\nu_f} \). Each \(S_i \) defines a \(\mathbb{Z}_2 \) group.
Generalized $Z_2 \times Z_2$ symmetry

- \mathcal{M}_{ν_f} leads to the TBM \(^4\) if

$$S^T_{2,3} \mathcal{M}_{\nu_f} S_{2,3} = \mathcal{M}_{\nu_f}$$

where $S_{2,3}$ are the elements of the $Z_2 \times Z_2$ symmetry

$$S_2 = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \quad \text{and} \quad S_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

$$S_2 S_3 = -S_1$$

- S_2 and (S_3) are determined by the second (third) column of the TBM mixing matrix

- S_3 corresponds to well known $\mu-\tau$ symmetry

- $\theta_{13} = 0$, $\theta_{23} = \frac{\pi}{4}$

A desirable replacement of the μ-τ symmetry would be which allows θ_{23} to be maximal but θ_{13} is not zero.

One such symmetry is obtained by combining μ-τ symmetry with CP transformation:

$$S_3^T \mathcal{M}_{\nu f} S_3 = \mathcal{M}_{\nu f}^* .$$

This predicts:

$$\sin^2 \theta_{23} = \frac{1}{2},$$

$$\sin \theta_{13} \cos \delta = 0.$$

Either $\theta_{13} = 0$ or Dirac CP violation is maximal.

θ_{12} is unconstrained.

Generalized $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry

We combine the generalized μ-τ symmetry with the “magic symmetry” corresponding to invariance under S_2 and define a generalized $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry

Case I:

$$S_{1,3}^T M_{\nu_f} S_{1,3} = M_{\nu_f}^*.$$

which implies

$$S_{2}^T M_{\nu_f} S_{2} = M_{\nu_f}.$$

which fixes the second column of V_{PMNS} matrix to be

$$1/\sqrt{3}(1, 1, 1)^T$$

$$|\sin \theta_{12} \cos \theta_{13}| = \frac{1}{\sqrt{3}} \implies \sin^2 \theta_{12} = \frac{1}{3} (1 + \tan^2 \theta_{13})$$

This puts a lower bound on θ_{12} i.e $\sin^2 \theta_{12} \geq 1/3$
Generalized $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry

\[
\mathcal{M}_{\nu f} = \begin{pmatrix}
 y + z - x & x + ix' & x - ix' \\
 x + ix' & y - ix' & z \\
 x - ix' & z & y + ix'
\end{pmatrix}
\]

- Re($\mathcal{M}_{\nu f}$) is in the TBM form while Im($\mathcal{M}_{\nu f}$) follows the condition

\[
S_{1,3}^T \text{ Im}(\mathcal{M}_{\nu f}) S_{1,3} = -\text{Im}(\mathcal{M}_{\nu f})
\]

- A special case where $\mathcal{M}_{\nu f}$ has 3 parameters\(^6\) can be obtained when

\[
x' = -\frac{1}{\sqrt{3}}(z - x).
\]

which results in smallest neutrino mass to be function of $\sin^2 \theta_{13}$ and Δm^2_{atm}

Case II: The second possibility is

\[S_{2,3}^T M_{\nu f} S_{2,3} = M_{\nu f}^* , \]

which leads to

\[S_1^T M_{\nu f} S_1 = M_{\nu f} . \]

This fixes the first column of \(V_{\text{PMNS}} \) to be \(1/\sqrt{6}(2, -1, -1)^T \)

Which implies

\[| \cos \theta_{12} \cos \theta_{13} | = \sqrt{\frac{2}{3}} \implies \sin^2 \theta_{12} = \frac{1}{3} \left(1 - 2 \tan^2 \theta_{13} \right) . \]

An upper bound on the solar angle \(\sin^2 \theta_{12} \leq 1/3 \)
Generalized $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry

$$M_{\nu f} = \begin{pmatrix} y + z - x & x + ix' & x - ix' \\ x + ix' & y + 2ix' & z \\ x - ix' & z & y - 2ix' \end{pmatrix}$$

- **Case III:** $S_{1,2}^T M_{\nu f} S_{1,2} = M_{\nu f}^*$ and this results into the μ-τ symmetric $M_{\nu f}$ which leads to $\theta_{13} = 0$
- Both cases I and II predict deviation from θ_{12} but in opposite direction
- Trivial Majorana phases and no restriction on masses of neutrinos
- Information on the five parameters, thus remaining four are unrestricted.
We extend the A_4 model for TBM by He et al.\cite{He:2006}.

- The matter and Higgs field content of the model with their assignments under the SM gauge group $G_{\text{SM}} \equiv SU(3)_c \times SU(2)_L \times U(1)_Y$ and A_4:

<table>
<thead>
<tr>
<th></th>
<th>l_L</th>
<th>e_R</th>
<th>μ_R</th>
<th>τ_R</th>
<th>ν_R</th>
<th>Φ</th>
<th>ϕ</th>
<th>χ</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{SM}</td>
<td>$(1, 2, -1)$</td>
<td>$(1, 1, -2)$</td>
<td>$(1, 1, -2)$</td>
<td>$(1, 1, -2)$</td>
<td>$(1, 1, 0)$</td>
<td>$(1, 2, -1)$</td>
<td>$(1, 2, -1)$</td>
<td>$(1, 1, 0)$</td>
</tr>
<tr>
<td>A_4</td>
<td>3</td>
<td>1</td>
<td>$1'$</td>
<td>$1''$</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Yukawa interactions of the model:

$$-\mathcal{L}_Y = y_e (\bar{l}_L \tilde{\Phi})_1 e_R + y_\mu (\bar{l}_L \tilde{\Phi})_1'' \mu_R + y_\tau (\bar{l}_L \tilde{\Phi})_1' \tau_R$$

$$+ y_D (\bar{l}_L \nu_R) \phi + \frac{1}{2} M \tilde{\nu}_R \nu_R^c + \frac{1}{2} B' (\tilde{\nu}_R \nu_R^c)_3 \chi + \text{h.c.}$$

$\tilde{\Phi} \equiv i \tau_2 \Phi^*$ We assume that all the couplings and all the vevs of scalar fields are real.

\cite{He:2006} X. -G. He, Y. -Y. Keum, R. R. Volkas, JHEP 0604, 039 (2006)
After the electroweak symmetry breaking governed by the vev of Φ and ϕ and if it is assumed that $\langle \Phi \rangle = \nu(1, 1, 1)^T$ then

$$M_l = \sqrt{3} \nu \ U(\omega) \ \text{Diag.}(y_e, y_\mu, y_\tau),$$

where

$$U(\omega) = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix}$$

and $\omega = e^{i2\pi/3}$

$$M_D = y_D \nu_\phi I$$

where $\nu_\phi = \langle \phi \rangle$

Further, assuming that the field χ develops vev in the direction $\langle \chi \rangle = \nu_{\chi}(1, 0, 0)^T$, the heavy neutrino mass matrix can be written as

$$M_R = \begin{pmatrix} A & 0 & 0 \\ 0 & A & B \\ 0 & B & A \end{pmatrix}$$

$B = B'\nu_{\chi}$

After the seesaw

$$M^I_{\nu} = -M_D M_R^{-1} M_D^T = \begin{pmatrix} (a^2 - b^2) & 0 & 0 \\ a & a & b \\ 0 & b & a \end{pmatrix}$$

$$a = -\frac{y_D^2 \nu^2}{A^2 - B^2} A \text{ and } b = \frac{y_D^2 \nu^2}{A^2 - B^2} B$$
We extend the model to get the desired neutrino mass matrix in two different ways

- Adding Higgs triplet through type-II seesaw
- Adding flavon field through type-I seesaw
- By adding three copies of SU(2) triplet fields Δ which also form a triplet of A_4 the Lagrangian has an additional term

$$\mathcal{L}_{\Delta} = y_L (\bar{l}_L l_L^c)_{3} \Delta + h.c.$$

$$\langle \Delta \rangle = \nu_{\Delta} (0, -1, 1)^T$$

$$\mathcal{M}_{\nu}^{II} = \begin{pmatrix}
0 & c & -c \\
c & 0 & 0 \\
-c & 0 & 0
\end{pmatrix}$$

$$\mathcal{M}_{\nu} = \mathcal{M}_{\nu}^{I} + \mathcal{M}_{\nu}^{II}$$
The neutrino mass matrix in flavor basis

\[M_{\nu_f} = U(\omega)^T M_{\nu} U(\omega) \]

when compared with general neutrino mass matrix derived earlier has an additional restriction on the parameters. This additional constraint restricts the neutrino masses. This mass matrix has 3 parameters. Thus there is an additional restriction on neutrino masses.

In exact TBM limit, this restriction results into following sum rule

\[\frac{2}{m_2} + \frac{1}{m_3} = \frac{1}{m_1} \]
Figure: Correlations of θ_{13} with mass dependent observables

- All the mass dependent observables slightly vary with the reactor angle

- Another extension of the model is by adding A_4 triplet flavon field χ' the Lagrangian has an additional term.

$$-\mathcal{L}^{\chi'}_Y = \frac{1}{2} y_R (\overline{\nu}_R \nu^c_R)_3 \chi' + \text{h.c.}$$
Assuming that χ' takes a vev $\langle \chi' \rangle = \nu_{\chi'}(0, -1, 1)^T$

$$M_R = \begin{pmatrix} A & C & -C \\ C & A & B \\ -C & B & A \end{pmatrix}$$

where $C = y_R \nu_{\chi'}$

$$M_L = \begin{pmatrix} \frac{(a^2 - b^2 + c^2)}{a} & c & -c \\ a & \frac{c}{a} & a & b \\ -c & b & a \end{pmatrix}$$

$$a = \frac{(C^2 - A^2)\nu_\phi^2 y_D^2}{(A+B)(A^2 - AB - 2C^2)}$$
$$b = \frac{(C^2 + AB)\nu_\phi^2 y_D^2}{(A+B)(A^2 - AB - 2C^2)}$$
and
$$c = \frac{C\nu_\phi^2 y_D^2}{(A^2 - AB - 2C^2)}$$
In the limit of exact TBM For NH

\[\Sigma m_i = 0.064\text{eV}, 0.066\text{eV} \quad m_\beta = 0.006\text{eV}, 0.008\text{eV} \quad m_{\beta\beta} = 0.0052\text{eV}, 0.0054\text{eV} \]

For IH \[\Sigma m_i = 0.122\text{eV} \quad m_\beta = 0.052\text{eV} \quad m_{\beta\beta} = 0.0156\text{eV} \]

The phenomenology of neutrino masses does not change significantly from the previous case.
The latest neutrino oscillation data suggest non zero θ_{13}, that suggest one to look for perturbations to the TBM pattern or search for alternate flavor symmetry.

A class of symmetry can be obtained by combining $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry with CP (generalized $\mathbb{Z}_2 \times \mathbb{Z}_2$)

Imposition of such symmetry lead to

I) $\sin^2 \theta_{23} = \frac{1}{2}$, $\sin^2 \theta_{12} = \frac{1}{3}(1 + \tan^2 \theta_{13})$

II) $\sin^2 \theta_{23} = \frac{1}{2}$, $\sin^2 \theta_{12} = \frac{1}{3}(1 - 2 \tan^2 \theta_{13})$, $\delta = \pi/2$

Case II can be obtained by extending the A_4 model either through SU(2) triplet or flavon field. The model leads to prediction for absolute neutrino mass as a function of reactor angle which can be probed in future non oscillation experiments.
THANK YOU